13. Glossary
Glossary
Below is the summary of all the functions and methods that you learned in this lesson:
Category: General Purpose
Function/Method | Description |
---|---|
numpy.ndarray.dtype |
Return the data-type of the elements of the array. Remember, arrays are homogeneous. |
numpy.ndarray.ndim |
Return the number of array-dimensions (rank), e.g., it will return 2 for a 4x3 array. |
numpy.ndarray.shape |
Return a tuple representing the array dimensions, e.g., it will return (rows,columns) for a rank 2 array. |
numpy.ndarray.size |
Return the number of elements present in the array. |
numpy.save |
Save an array to .npy (numpy) format. |
numpy.load |
Load array from the .npy files. |
numpy.random.random |
Return random floats values from the interval [0.0, 1.0), in a specified shape. |
numpy.random.randint |
Return random integers from the half-open interval [a, b), in a specified shape. |
numpy.random.normal |
Return random samples from a Gaussian (normal) distribution. |
numpy.random.permutation |
Return a randomly permuted sequence from the given list |
numpy.reshape numpy.ndarray.reshape |
Returns an array containing the same elements with a new shape, without affecting the the original array. |
Category: Array Creation
Function/Method | Description |
---|---|
numpy.ones |
Return a new array of given shape and type, filled with 1s. |
numpy.zeros |
Return a new array of given shape and type, filled with 0s. |
numpy.full |
Return a new array of given shape and type, filled with a specific value. |
numpy.eye |
Return a 2-D array with 1s on the diagonal and 0s elsewhere. |
numpy.diag |
Extract the diagonal elements. |
numpy.unique |
Return the sorted unique elements of an array. |
numpy.array |
Create an n-dimensional array. |
numpy.arange |
Return evenly spaced values within a given half-open interval [a, b). |
numpy.linspace |
Return evenly spaced numbers over a specified interval [a,b]. |
numpy.ndarray.copy |
Returns a copy of the array. |
Category: Operating with Elements and Indices
Function/Method | Description |
---|---|
numpy.insert |
Insert values along the given axis before the specified indices. |
numpy.delete |
Return a new array, after deleting sub-arrays along a specified axis. |
numpy.append |
Append values at the end of the specified array. |
numpy.hstack |
Return a stacked array formed by stacking the given arrays in sequence horizontally (column-wise). |
numpy.vstack |
Return a stacked array formed by stacking the given arrays, will be at least 2-D, in sequence vertically (row-wise). |
numpy.sort |
Return a sorted copy of an array. |
numpy.ndarray.sort |
Sort an array in-place. |
Category: Set Operations
Function/Method | Description |
---|---|
numpy.intersect1d |
Find the intersection of two arrays. |
numpy.setdiff1d |
Find the set difference of two arrays. |
numpy.union1d |
Return the unique, sorted array of values that are in either of the two input arrays. |
Category: Arithmetic and Statistical Operations
Function/Method | Description |
---|---|
numpy.add |
Element-wise add given arrays |
numpy.subtract |
Subtract arguments of given arrays, element-wise. |
numpy.multiply |
Multiply arguments of given arrays, element-wise. |
numpy.divide |
Returns a true division of the inputs, element-wise. |
numpy.exp |
Calculate the exponential of all elements in the input array. |
numpy.power |
First array elements raised to powers from second array, element-wise. |
numpy.sqrt |
Return the non-negative square-root of an array, element-wise. |
numpy.ndarray.min |
Return the minimum along the specified axis. |
numpy.ndarray.max |
Return the maximum along a given axis. |
numpy.mean numpy.ndarray.mean |
Compute the arithmetic mean along the specified axis. |
numpy.median |
Compute the median along the specified axis. |